Uniform Convergence of the Multigrid V -cycle on Graded Meshes

نویسندگان

  • HENGGUANG LI
  • H. LI
چکیده

We prove the uniform convergence of the multigrid V -cycle on graded meshes for corner-like singularities of elliptic equations on a bounded domain Ω ⊂ IR. In particular, using some weighted Sobolev space K a (Ω) and the method of subspace corrections with the elliptic projection decomposition estimate on K a (Ω), we show that the multigrid V -cycle converges uniformly for piecewise linear functions with standard smoothers (Richardson, weighted Jacobi, Gauss-Seidel, etc.).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multigrid algorithms for symmetric discontinuous Galerkin methods on graded meshes

We study a class of symmetric discontinuous Galerkin methods on graded meshes. Optimal order error estimates are derived in both the energy norm and the L2 norm, and we establish the uniform convergence of V -cycle, F -cycle and W -cycle multigrid algorithms for the resulting discrete problems. Numerical results that confirm the theoretical results are also presented.

متن کامل

Uniform convergence of the multigrid V-cycle on graded meshes for corner singularities

This paper analyzes a Multigrid V-cycle scheme for solving the discretized 2D Poisson equation with corner-singularities. Using weighted Sobolev spaces K a (Ω) and a space decomposition based on elliptic projections, we prove that the multigrid V -cycle with standard smoothers (Richardson, weighted Jacobi, Gauss-Seidel, etc.) and piecewise linear interpolation converges uniformly for the linear...

متن کامل

Multigrid methods for the symmetric interior penalty method on graded meshes

The symmetric interior penalty (SIP) method on graded meshes and its fast solution by multigrid methods are studied in this paper. We obtain quasi-optimal error estimates in both the energy norm and the L2 norm for the SIP method, and prove uniform convergence of the W -cycle multigrid algorithm for the resulting discrete problem. The performance of these methods is illustrated by numerical res...

متن کامل

Uniform convergence of multigrid V-cycle on adaptively refined finite element meshes for second order elliptic problems

Abstract In this paper we prove the uniform convergence of the standard multigrid V-cycle algorithm with Gauss-Seidel relaxation performed only on new nodes and their “immediate” neighbors for discrete elliptic problems on adaptively refined finite element meshes using the newest vertex bisection algorithm. The proof depends on sharp estimates on the relationship of local mesh sizes and a new s...

متن کامل

Multigrid methods for two-dimensional Maxwell's equations on graded meshes

In this work we investigate the numerical solution for two-dimensional Maxwell’s equations on graded meshes. The approach is based on the Hodge decomposition. The solution u of Maxwell’s equations is approximated by solving standard second order elliptic problems. Quasi-optimal error estimates for both u and ∇ × u in the L2 norm are obtained on graded meshes. We prove the uniform convergence of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007